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Abstract

A rational treatment of time-mean separation of a nominally steady turbulent boundary layer from a smooth surface

in the limit Re!1, where Re denotes the globally defined Reynolds number, is presented. As a starting point, it is

outlined why the ‘‘classical’’ concept of a small streamwise velocity deficit in the main portion of the oncoming

boundary layer does not provide an appropriate basis for constructing an asymptotic theory of separation. Amongst

others, the suggestion that the separation points on a two-dimensional blunt body is shifted to the rear stagnation point

of the impressed potential bulk flow as Re!1—which is expressed in a previous related study—is found to be

incompatible with a self-consistent flow description. In order to achieve such a description, a novel scaling of the flow is

introduced, which satisfies the necessary requirements for formulating a self-consistent theory of the separation process

that distinctly contrasts former investigations of this problem. As a rather fundamental finding, it is demonstrated how

the underlying asymptotic splitting of the time-mean flow can be traced back to a minimum of physical assumptions

and, to a remarkably large extent, be derived rigorously from the unsteady equations of motion. Furthermore, first

analytical and numerical results displaying some essential properties of the local rotational/irrotational interaction

process of the separating shear layer with the external inviscid bulk flow are presented.
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1. Introduction

The rational description of break-away separation of a statistically steady and two-dimensional incompressible

turbulent boundary layer flow past an impermeable rigid and smooth surface in the high-Reynolds-number limit

represents a long-standing unsolved hydrodynamical problem. Needless to say that an accurate prediction of the

position of separation, in combination with the local behaviour of the skin friction, has great relevance for many
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engineering applications, where e.g. internal flows, like those through diffuser ducts, or flows past airfoils play a crucial

role.

1.1. Problem formulation and governing equations

The picture of such flows near separation is sketched in Fig. 1. As a basic assumption, the suitably formed global

Reynolds number Re is taken to be asymptotically large:

Re :¼ Ũ L̃=ñ!1; n :¼ Re�1 ! 0. (1)

Herein ñ, L̃, and Ũ denote, respectively, the (constant) kinematic viscosity of the fluid, a reference length, typical for the

geometry of the portion of the surface under consideration, and a characteristic value of the surface slip velocity

impressed by the limiting inviscid stationary and two-dimensional irrotational bulk flow, hereafter formally indicated

by n ¼ 0. All flow quantities are suitably non-dimensionalised with L̃, Ũ , and the (uniform) fluid density. Let t, p,

x ¼ ðs; n; zÞ, and u ¼ ðu; v;wÞ be the time, the fluid pressure, the position, and the velocity vector. Here u, v, and w are the

components of u in directions of the natural coordinates s, n, and z, respectively, along, normal to, and projected onto

the separating streamline S, given by n ¼ 0, of the flow in the limit n ¼ 0. Furthermore, ueðsÞ denotes the surface slip

velocity in that limit. The origin s ¼ n ¼ 0 is chosen as the location S where S departs from the surface. Thus, S

coincides with the surface contour for sp0. Also, note that S has, in general, a curvature of Oð1Þ for jsj ¼ Oð1Þ.

In coordinate-free form, the Navier–Stokes equations then are written as

r � u ¼ 0, (2)

Dtu ¼ �rpþ nDu; Dt ¼ qt þ u � r; D ¼ r � r, (3)

where r is the gradient with respect to x. They are subject to the common no-slip condition u ¼ 0 holding at the surface.

As a well-known characteristic, the stationary Reynolds-averaged turbulent flow can be expressed in terms of the time-

averaged motion. In the following we employ the conventional Reynolds decomposition of any (in general, tensorial)

flow quantity q into its time-mean component q, see Fig. 1, here regarded as independent of z, and the (in time and

space) stochastically fluctuating contribution q0,

qðx; t; . . .Þ ¼ qðx; y; . . .Þ þ q0ðx; t; . . .Þ; q :¼ lim
Y!1

1

Y

Z Y=2

�Y=2
qðx; tþ y; . . .Þdy. (4)

Herein the dots indicate any further dependences of q apart from on x and t, e.g. on Re. Reynolds-averaging of Eqs. (2)

and (3) then yields the well-established Reynolds equations (in the case qz � 0 of planar time-mean flow):

r � u ¼ 0, (5)

Dtu ¼ �rp� r � u0u0 þ nDu; Dt ¼ u � r. (6)

It is further presumed in the subsequent analysis that all components of the Reynolds stress tensor �u0u0 are, in general,

of asymptotically comparable magnitude (assumption of locally isotropic turbulence). Most important, we disregard

any effects due to free-stream turbulence. That is, the turbulent motion originates from the relatively thin fully
Fig. 1. Time-mean flow near (a) smooth separation (the dotted streamline indicates possible backflow) and (b) separation due to

stagnation of the bulk flow, cf. Neish and Smith (1992). The inviscid limit of u is shown dashed, and the turbulent shear flow is

indicated by a shading.
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turbulent boundary layer adjacent to the surface, which near S passes into an accordingly slender separated free shear

layer along S for s40.

1.2. Motivation

From an asymptotic point of view, three outstanding contributions to the solution of the problem under

consideration have to be mentioned.

Sychev (1983, 1987) was the first who elucidated the question of the asymptotic structure of the oncoming boundary

layer by proposing a three-layer splitting of the latter, sufficiently far ahead of S. This scaling, however, is at variance

with the classical finding of a two-tiered boundary layer that is found to hold for firmly attached flow only [see, for

instance, the pioneering work by Mellor (1972)]. We start the outline of both formulations by noting that each of them

adopts the familiar description of the viscous wall layer close to the surface; the same holds for the flow descriptions

discussed subsequently. On top of that region the Reynolds shear stress �u0v0 asymptotically equals the (local) wall

shear stress, given by the square of the skin friction velocity u�, and the streamwise velocity component u satisfies the

celebrated logarithmic law of the wall. By using the conventional notation, it reads

u=u� � k�1 ln nþ þ Cþ; nþ ¼ n u�Re!1, (7)

where the well-known constants k and Cþ are quantities of Oð1Þ. The match of the wall region with the adjacent layer

then shows that the expansion

½u;�u0v0=u2�� � ½u0;T0�ðs; ZÞ � g½U1;T1�ðs; ZÞ þ Oðg2Þ; Z ¼ n=d (8)

holds in the latter. Here, d is a measure for the thickness of that layer, and, by introducing the so-called slip velocity us,

the gauge function g is seen to satisfy the skin-friction law

g ¼ u�=us � k= lnRe; dg=ds ¼ Oðg2Þ; usðsÞ :¼ u0ðs; 0Þ. (9)

In the classical two-tiered description of the boundary layer, cf. Mellor (1972), it is assumed that in the fully turbulent

main region the (positive) streamwise velocity ‘‘defect’’ with respect to the external potential flow, ue � u, is

asymptotically small. In turn, u0ðs; ZÞ � usðsÞ � ueðsÞ, and in the boundary layer limit the momentum balance (6) reduces

to a balance between the linearised convective terms and qnð�u0v0Þ in leading order, showing that the boundary layer

thickness d is of OðgÞ. In contrast, according to the approach made by Sychev (1983, 1987), the expansion (8) holds in

the additionally introduced middle layer which meets the requirement that the velocity defect ue � u and, consequently,

ue � us are quantities of Oð1Þ. Thus, in the boundary layer approximation to Eq. (6) the convective terms balance both

qnð�u0v0Þ and the imposed (adverse) pressure gradient �ue due=ds, such that the thickness d of the middle layer is of

Oðg2Þ. This wake-type flow structure then allows for a significant decrease in the wall shear stress according to (9) when

us tends to zero as s! 0� and, moreover, for the occurrence of flow reversal further downstream by adopting a local

turbulent/irrotational interaction strategy (without the need of a specific turbulence closure).

One readily finds that the gradients qnu in the viscous wall layer and the adjacent layer, described by the expansion

(8), match on the basis of the logarithmic behaviour (7) provided that qZu0 � 0. Unfortunately, this again gives

u0ðs; ZÞ � usðsÞ � ueðsÞ and, thus, contradicts the original assumption of a large velocity defect in the middle layer. That

inherent mismatch of the wall layer and the wake region was first noted by Melnik (1989), who used mixing length

arguments, in the second work to be highlighted. Therefore, Sychev’s approach can hardly be accepted as a self-

consistent theory. Let us also note the closely related inconsistency encountered in connection with the two-tiered

boundary layer proposed by Afzal (1996), who also suggested a velocity deficit of Oð1Þ to hold in the outer region.

However, Melnik also proposed a non-classical initially three-tiered boundary layer where the outermost part plays the

role of the aforementioned middle layer. But most important, and in striking difference to any previous asymptotic

treatment of turbulent shear flows, in Melnik’s (1989) work the slenderness of the latter is measured by some small non-

dimensional parameter, denoted by a, which is regarded to be essentially independent of Re. Melnik’s motivation for

the resultant two-parameter matched asymptotic expansions of the flow quantities merely relies upon the observation

that any commonly employed shear stress closure includes a small number (a most familiar example is the so-called

Clauser ‘‘constant’’ a � 0:0168 in the algebraic Cebeci–Smith model) which is seen to measure the boundary layer

thickness if the velocity defect in the fully turbulent flow regime is taken to be of Oð1Þ. This idea has been followed up

and substantiated by order-of-magnitude reasoning in the more recent papers by Scheichl and Kluwick (2007a, b),

where it is shown to provide a sound basis for developing a self-consistent theory of turbulent marginal separation. On

the other hand, it is found that Melnik’s theory cannot be extended in order to describe the global separation process

due to two serious shortcomings: (i) the proposed flow structure is strongly associated with the adopted coupling
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a1=2 lnRe ¼ Oð1Þ, which is apparently inconsistent with the original assumption on a and, hence, does not allow for a

correct formulation of the gradual transition from attachment to separation of the flow inside the wall layer; (ii) the

impressed potential flow does not exhibit a free streamline departing smoothly from the surface, in order to avoid a

Goldstein-type singularity encountered by the boundary layer solution that is evidently unsurmountable by assuming a

firmly attached external bulk flow, cf. Scheichl and Kluwick (2007b).

A different viewpoint was taken up in the third contribution to be noticed, by Neish and Smith (1992). They

considered the streamwise development of a classical small-defect boundary layer where the irrotational external flow is

indeed presumed to be strictly attached; that is, it exhibits a rear stagnation point, see Fig. 1(b). Interestingly, this

concept is fully consistent with the following important finding elucidated in the subsequent analysis: in the case of

smooth inviscid flow detachment, as depicted in Fig. 1(a), the associated singular behaviour of the surface pressure

immediately upstream of the (a priori unknown) position of S does not trigger a significant change in the order of

magnitude of the (initially small) velocity defect, which would be necessary to render smooth boundary layer separation

possible. Consequently, within the framework of classical turbulent boundary layer theory separation is suggested to

occur asymptotically close to the rear stagnation point as Re!1.

Unfortunately, however, it has not been addressed satisfactorily by Neish and Smith (1992) whether and how the

small velocity defect may rather abruptly become of Oð1Þ due to the retardation of the potential flow as the stagnation

point S is approached, in order to ensure an uniformly valid flow description. As pointed out in the first part of the

present study, the inviscid vortex flow induced in the immediate vicinity of the stagnation point S indeed appears to

hamper severely the construction of a self-consistent asymptotic theory. This finding represents the starting point for

the subsequent analysis, where it is shown how the closure-independent asymptotic formulation of a turbulent

boundary layer having a finite thickness of OðaÞ, a51, as Re!1 and which may undergo marginal separation, see

Scheichl and Kluwick (2007b), can be adapted to that of massive separation. Unlike the theories presented by Melnik

(1989) and Neish and Smith (1992), here the formal limit a ¼ Re�1 ¼ 0 corresponds to the required class of inviscid

flows with free streamlines. Furthermore, we demonstrate how the asymptotic scaling of the (oncoming) flow, which in

connection with turbulent marginal separation (Scheichl and Kluwick, 2007b) was based on rather heuristic arguments

from a time-averaged point of view, can be deduced by means of a multiple-scales analysis of the equations of motion

(2) and (3).

We commence the investigation by considering the evolution of the boundary layer immediately upstream of the

surface position S, indicating inviscid separation.
2. Limitations of the small-defect approach

The case where the streamwise velocity defect in the fully turbulent main region of the boundary layer is small, say,

ue � u ¼ Oð�Þ, �51, is considered first. To be more precise, we assume that � ¼ g, according to Eqs. (8) and (9) (although

the more general assumption g=� ¼ Oð1Þ, including oð1Þ, would not alter the following analysis substantially). Therefore,

the boundary layer thickness d is of OðgÞ and expanded as

d=g ¼ D0ðxÞ þ gD1ðxÞ þ � � � . (10)

By setting U1=ue ¼ F 00ðs; ZÞ, Z ¼ Oð1Þ, the leading-order streamwise momentum equation, supplemented with

appropriate boundary and matching conditions, then reads

ue½dðueD0Þ=ds�ZF 000 � D0qsðu
2
eF 00Þ ¼ u2eT 00, (11)

F0ðs; 0Þ ¼ T0ðs; 0Þ � 1 ¼ 0; F 00�� k�1 ln Zþ Oð1Þ; Z! 0, (12)

F 00ðs; 1Þ ¼ F 00
0
ðs; 1Þ ¼ T0ðs; 1Þ ¼ 0. (13)

We mention that in this connection primes denote derivatives with respect to Z. Also, it will prove convenient to

integrate Eq. (11) with respect to Z by using Eq. (12), which gives

u2e ½dðueD0Þ=ds�ZF 00 � qsðu
3
eD0F0Þ ¼ u3e ðT0 � 1Þ. (14)

Finally, evaluation of relationship (14) at the boundary layer edge and subsequent integration from some value s0o0 to

so0 yields

d½u3eD0F 00ðs; 1Þ�=ds ¼ u3
e ; u3eðsÞD0ðsÞF 00ðs; 1Þj

s¼s
s¼s0
¼

Z s

s0

u3e ðsÞds. (15)
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In order to assess the assumption of a small velocity defect holding in the oncoming flow with respect separation, we

analyse Eqs. (11)–(13) in the limit s! 0� for the two different cases indicated by Fig. 1(a) and (b), respectively.

Without adoption of a specific turbulence closure, we begin the analysis by considering the first case.

2.1. Flow slightly upstream of smooth separation

It is well known that, under rather general conditions concerning the flow in the stagnant (i.e.dead-water) or backflow

region where s40 and no0,

ueðsÞ=ueð0Þ � 1þ 2kð�sÞ1=2 þ ð10k2=3Þ ð�sÞ þ O ð�sÞ3=2
h i

; s! 0�, (16)

in the inviscid limit n ¼ 0, cf. Imai (1953), Birkhoff and Zarantonello (1957), and Gurevich (1966), for instance. Here

the non-negative parameter k parametrises the class of smoothly separating flows as it depends on the position of S on

the body contour. It gives rise to a locally adverse and unbounded pressure gradient �ue due=ds � kð�sÞ�1=2. Therefore,

the question arises if the latter provokes a significant increase of the velocity defect in the oncoming boundary layer,

which is required for a correct description of flow reversal further downstream. We remark that in the references

mentioned above the free streamline is assumed to confine a dead-water zone (Kirchhoff-type potential flow)

throughout. However, it can be demonstrated that Eq. (16) holds in the more general case of a (smoothly) separating

potential flow that exhibits a relatively weak backflow. We disregard this possibility in the following, since we feel that

for a physically realistic flow picture a reverse flow eddy is necessarily associated with viscous effects.

In order to keep the analysis as general as possible, we now only assume that

ueðsÞ=ueð0Þ � 1þ wðsÞ þ � � � ; jdw=dsj ! 1; s! 0�. (17)

This singular behaviour is expected to provoke a considerable growth of the turbulent velocity scale u� (and, in turn, of

the fluctuations), expressed through a gauge function jðsÞ,

F0 � jðsÞGðZÞ þ � � � ; T0 � j2ðsÞRðZÞ þ � � � ; j!1; s! 0�. (18)

From Eqs. (15) and (18), and the fact that ue in (17) admits a finite limit, there follows a (intuitively rather unexpected)

decrease of the boundary layer thickness of the form D0 � D=j, where D is a (positive) constant. Also note that the

term qsðu
3
eD0F0Þ in Eq. (14) is bounded for s! 0�. Since ue is bounded, too, the first term in Eq. (14) asymptotically

equals �Du3
e ð0ÞZG0ðZÞdðlnjÞ=ds. As the velocity defect and, in turn, G0 are non-negative, that expression tends to �1

for s! 0�. Then j is seen to be proportional to ð�sÞ�1=2, as relationship (14) reduces to a balance between that

negative term and u3
e j

2ðsÞRðZÞ. The latter term, however, is non-negative, as is the Reynolds stress T0 in the oncoming

flow. From this contradiction one then infers that F0, T0, and D0 are finite for s! 0�. Consequently, inspection

of Eqs. (14) and (17), subject to the condition (13), shows that Eq. (18) is to be replaced by a sub-expansion of the

expansion (8),

½F0;T0;D0� � ½F00ðZÞ;T00ðZÞ;D00� þ wðsÞ½F01ðZÞ;T01ðZÞ;D01� þ � � � . (19)

Therefore, the velocity defect does not change its order of magnitude. One then concludes that, by specifying wðsÞ in
Eq. (17) in accordance with the behaviour given by Eq. (16), the small-defect formulation represents an inadequate

description of a turbulent boundary layer approaching smooth separation. Note that the same conclusion can be drawn

for turbulent separation at a trailing edge under angle of attack, where the external velocity admits a square-root

behaviour akin to that in Eq. (16). More generally spoken, the expansion (19) holds if ue admits a finite limit, according

to Eq. (17). We add that it has been demonstrated numerically by Scheichl (2001) that even in case of a rather sharp

step-like decrease of ueðsÞ the velocity defect characterised by F0, T0, and D0, remains bounded.

Summarising, it is possible to give a rather comprehensive answer to an interesting question raised in the comment on

the work of Neish and Smith by Degani (1996), namely, how the small-defect structure responds to different limiting

forms of ueðsÞ as s! 0�: apparently, the only scenario that is compatible with a change of magnitude of the velocity

defect, as it is required for an asymptotic description of separation, is that of a boundary layer approaching a stagnation

point of the (otherwise attached) flow in the inviscid limit n ¼ 0. This is exactly the picture of separation originally

proposed by Neish and Smith (1992).

2.2. Flow in the vicinity of a rear stagnation point: non-existence of a self-consistent flow picture

Close to a rear stagnation point, see Fig. 1(b), the potential flow is linearly retarded as u �� cs, v � cn, where

s; n! 0 and c is a positive constant. Then ue� � cs, in contrast to Eq. (17). Substitution of that relationship into the
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expressions in Eqs. (14) and (15) then predicts a growth of both the boundary layer thickness and the velocity defect, as

expressed by Eq. (18). Specifically,

D0 � D½� lnð�sÞ�1=2=ð�sÞ; j ¼ D= 2½� lnð�sÞ�1=2ð�sÞ2
n o

; s! 0�, (20)

where D again is a positive constant, cf. Neish and Smith (1992) and Degani (1996). It then follows from Eq. (20) that

relationship (14) reduces to the equation ZG0ðZÞ ¼ RðZÞ for Z ¼ Oð1Þ. Since the scalings represented by Eq. (20) are

incompatible with the inhomogeneous boundary conditions (12) required by the match with the viscous wall layer, on

top of the latter a sublayer where Z ¼ Oðj�2Þ has to be introduced. However, as that flow region appears to behave

passively with respect to the further analysis, it is disregarded here.

As a consequence of the growth of D, see Eq. (20), the boundary layer approximation ceases to be valid close to the

stagnation point S when the distance �s and d become of comparable magnitude. From the expansion (10) then follows

that this region is characterised by suitably rescaled coordinates ðX ;Y Þ ¼ ðs; nÞ=t, where t ¼ ðDgÞ1=2½�ðln gÞ=2�1=4. The
resulting asymptotic splitting of the flow is depicted in Fig. 2(a). In the new ‘‘square’’ domain II of extent t the flow

quantities are expanded in the form

u

ct
;

v

ct
;
p� pS

ðctÞ2

� �
� �X ;Y ;

X 2 þ Y 2

2

� �
þ

1

ln g
½qYC;�qXC;P� þ O

1

ln2 g

� �
, (21)

where pS is the (time-mean) pressure in S. Here the magnitude of the velocity defect is still asymptotically small and

varies only logarithmically with g. As an important implication, the presence of the logarithmic terms in relationships

(20) is seen to prevent the Reynolds stresses, which are of Oðt2=ln2 gÞ, to affect even the perturbed flow in leading order.

Indeed, substitution of the expansion (21) into the momentum equation (6) shows that the perturbation stream function

CðX ;Y Þ and the pressure disturbance PðX ;Y Þ satisfy the Euler equations, linearised about the stagnant potential flow:

qX ðXqYCÞ � YqYYC ¼ �qX P; �X qXXCþ qY ðY qXCÞ ¼ �qY P. (22)

By introducing the vorticity O ¼ ðqXX þ qYY ÞC, elimination of P in Eq. (22) yields the vorticity transport equation,

ðXqX � YqY ÞO ¼ 0. Finally, integration gives

ðqXX þ qYY ÞC ¼ Oð�XY Þ, (23)

expressing the well-known property of two-dimensional steady inviscid flows that the vorticity is constant along a

streamline. The match with the oncoming boundary layer flow according to Eqs. (18), (20), and (21), and the obvious

requirement that the contribution originating from that ‘‘square’’ region to the external potential flow conforms in

magnitude to that induced by the incident boundary layer, which is of Oðg2Þ, then fixes both the vorticity O and the

boundary conditions supplementing Eq. (23),

O ¼ G00ðZÞ; Z ¼ �XY , (24)

CðX ; 0Þ ¼ 0, (25)
Fig. 2. (a) Asymptotic flow splitting near rear stagnation point S: oncoming boundary layer I with emerging sublayer I0, resulting ‘‘square’’

region II with sublayer II0 (not considered in text), viscous wall layer III (increase of thickness proportional to 1=s, s! 0, not discussed

here), separating streamline S of the stagnant potential flow; the dotted lines indicate the connection to the regions not considered in the

analysis. (b) Smooth inviscid separation from a (here symmetrical) cylindrical body, separating streamlines S for different values of k in

Eq. (16); note the flow showing a cusp-shaped closed cavity which neighbours the attached flow characterised by a rear stagnation point S.
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C�GðZÞ=X 2; Z ¼ Oð1Þ; X !�1, (26)

C ¼ Oðr�2Þ or oðr�2Þ; r :¼ðX 2 þ Y 2Þ
1=2
!1. (27)

Note that G0ðZÞ�G0ð0Þ � ð2=kÞ½G0ð0ÞZ�1=2, allowing for a match with the aforementioned sublayer, and not

G0ðZÞ � � k�1 ln ZþOð1Þ, in accordance with the usual near-wall behaviour given by Eq. (12). One then reveals a

finite surface slip velocity given by UsðX Þ :¼ ð@YCÞðX ; 0Þ and a corresponding half-power behaviour @YC � Us �

ð2=kÞ½G0ð0ÞY=X 1=2 as Y ! 0. Also, the reuse of the boundary layer coordinate Z introduced before in (24) shows that

the edge n ¼ d of the turbulent flow region II here is given by d � t=ð�X Þ, see Fig. 2(a). Stated equivalently, the curve

�XY ¼ Z � 1 disjoins the turbulent from the (approximately) irrotational external region as O ¼ 0 for ZX1.

We seek the solution C of the Poisson problem given by Eqs. (23)–(26) in the range Xo0, YX0. That is, in the

present investigation we do not take into account the ‘‘collision’’ of the oncoming flow with that approaching S

for s! 0þ, cf. Figs. 1(b) and 2(a). We conveniently set C ¼ Cp þCh, where CpðX ;Y Þ is a particular solution of

Eqs. (23)–(25) and the homogeneous contribution ChðX ;Y Þ satisfies Laplace’s equation, ðqXX þ qYY ÞCh ¼ 0, subject

to (25). By defining Gð�ZÞ :¼ � GðZÞ, ZX0, and using standard methods, one then obtains

Cp ¼
1

4p
d
1

�1d
1=jsj

�1=jsjG
00ð�suÞ ln½ðX � sÞ2 þ ðY � uÞ2�dsdu ð�1oXo1;�1oYo1Þ, (28)

and, after integration by parts and some manipulations

Cp ¼
1

2p

Z 1

�1

G0ðZÞd
1

�1

jsjY � Z

s½s2ðX � sÞ2 þ ðjsjY � ZÞ2�
dsdZ ð�1oXo1;�1oYo1Þ. (29)

The function CpðX ;Y Þ is skew-symmetric with respect to the origin X ¼ Y ¼ 0, where Cpð0;Y Þ � CðX ; 0Þ � 0.

Moreover, it is found to vary with R�2 for R2 ¼ X 2 þ Y 2 !1 and fixed values of W:¼ arctanðY=X Þ (note that the

skew-symmetric distribution of Oð�XY Þ acts like a quadrupole in the far field). On the other hand, Cp � ½GðZÞ �
HðZÞ�=X 2 for X !�1, with Hc0 but H 00 � 0, where Z and, in turn, the function HðZÞ (which is not stated explicitly

here) are kept fixed. Since HcG, however ChðX ;Y Þ must behave as

Ch � HðZÞ=X 2ðHc 0;H 00 � 0Þ; Z ¼ Oð1Þ;X !�1, (30)

such that C satisfies the upstream condition (26). An asymptotic investigation of Laplace’s equation (that takes into

account symmetry properties of the solution that are consistent with the aforementioned skew-symmetry of Cp) then

shows that Ch � R�2½A cosð2WÞ þ B sinð2WÞ�, where A and B are constants, is the only possible behaviour for R!1.

Unfortunately, however, and despite its agreement with the far-field conditions (27), this relationship for Ch does not meet

the required match with the limiting form (30) as W! p� and X !�1, Cp is evaluated by exploiting Eq. (29). Thus, the

problem posed by Eqs. (23)–(26) has no solution. Therefore, that asymptotic picture of separation taking place close to a

rear stagnation point, as originally proposed by Neish and Smith (1992), must be regarded as at least questionable.

A more concise proof of this statement has been found in the course of a private communication with Professor F.T.

Smith after submission of the paper (note Acknowledgement): a convenient treatment of the stagnating potential flow

considered here is provided by the suitable conformal mapping X ¼ �Z2=2 of the third quarter (Xp0, YX0) of the

complex plane Z :¼ X þ iY onto the upper half of the complex plane X :¼ zþ iZ. In turn, Eqs. (23)–(27) subject to the

according transformations z ¼ ðY 2 � X 2Þ=2, Z ¼ �XY , and Ĉðz; ZÞ :¼ CðX ;Y Þ read

ðqzz þ qZZÞĈ ¼ G00ðZÞ=½2ðz2 þ Z2Þ1=2�, (31)

Ĉðz; 0Þ ¼ 0, (32)

Ĉ �� GðZÞ=ð2zÞ; Z ¼ Oð1Þ; z!�1, (33)

Ĉ ¼ Oð1=rÞ or oð1=rÞ; r :¼ ðz2 þ Z2Þ1=2 !1. (34)

In that case a particular solution Ĉ ¼ Ĉpðz; ZÞ of Eqs. (31)–(33) found by exploiting standard methods and the

aforementioned anti-symmetry of OðZÞ with respect to Z ¼ 0 is given by

Ĉp ¼
1

8p
d
1

�1G00ðuÞPV
Z 1
�1

ln½ðx� sÞ2 þ ðZ� uÞ2�

ðs2 þ u2Þ1=2
dsdu ð�1ozo1;�1pZo1Þ. (35)
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Herein, the principal value of the second integral refers to the infinitely remote point, jzj ¼ 1, due to the logarithmic

singularity of the integrand there. On the one hand, non-existence of the solution of Eqs. (31)–(34) is indicated by

considering the far-field behaviour of an appropriate homogeneous solution Ĉ ¼ Ĉhðz; ZÞ of Eq. (31), in a manner

analogous to that adopted in case of the original problem, Eqs. (23)–(27). More simply, however, multiplying of

Eq. (31) with Z and subsequent integration in the range �1ozo1, 0pZo1 gives the contradiction

0 � ðlnAÞ
R 1
0 ZG00ðZÞdZ � �Gð1Þ lnA as A!1. Here this limit is considered as integration of the right-hand side of

Eq. (31) is initially carried out from z ¼ �A to z ¼ A and Z ¼ 0 to Z!1.

The formal inconsistency outlined before has not been addressed by Neish and Smith (1992). Apparently, this is due

to the neglect of the logarithmic terms in expressions (20) in their discussion of the match with the ‘‘square’’ region II. In

turn, they propose a vortex flow there which exhibits a velocity defect relative to the stagnating external flow of Oð1Þ, in

striking contrast to the expansion (21). Consequently, in the papers by Neish and Smith (1992) and Degani (1996) both

the magnitude of the velocities and the extent of the emerging region II are of g1=2. Thus, the flow there is governed by

the full Reynolds equations (1), rather than their linearised form (22). It is that fully nonlinear stage which prompted

Neish and Smith (1992) and Degani (1996) to conclude that separation would occur a distance of Oðg1=2Þ upstream of S.

Also, it is not explained in these papers how the flow region II is transformed into a turbulent shear layer along the

separated streamline S, which then coincides with the Y-axis, see Fig. 2(a).

A further uncertainty is raised by another issue that has been put forward by Neish and Smith (1992): it is argued that

the position of smooth flow detachment approaches the rear stagnation point if one considers the limit k!1 in

relationship (16). The flow situation for different values of k is sketched in Fig. 2(b), cf. Birkhoff and Zarantonello

(1957): from a topological point of view, the only candidate for a flow exhibiting free streamlines around a cylindrical

body that neighbours the completely attached potential flow with a rear stagnation point S is the one which embeds a

vanishingly small interior (cusp-shaped) cavity/eddy in the vicinity of S. However, it has not been demonstrated

convincingly so far that such a solution is associated with correspondingly large values of k. We note that the class of

inviscid flows having free streamlines is currently under investigation. [To this end, the methods of potential flow theory

presented by Gurevich (1966) are adopted.]
3. The large-defect boundary layer and smooth separation

The picture of separation considered by Neish and Smith (1992) and Degani (1996) is apparently not in accordance

with experimental findings. In fact, separation from a cylindrical body takes place a relatively short distance

downstream of the location of its maximum cross-section, even for very large values of Re. This finding, together with

the serious difficulties discussed in the previous section, then strongly suggests to abandon the assumption of a small-

defect boundary layer in favour of a flow description where a streamwise velocity deficit of Oð1Þ is stipulated. As

outlined in the Introduction, such an asymptotic concept that (i) surmounts the difficulties in the matching procedure

due to the logarithmic velocity distribution (7) encountered in Sychev’s (1983, 1987) theory, and (ii) is corroborated by

any commonly used turbulence closure, has already been proven successful in the description of turbulent marginal

separation, see Scheichl and Kluwick (2007a, b).

In this novel flow description the boundary layer thickness d is measured by a small parameter a which is independent

of Re as Re!1. This most remarkable characteristic anticipates the existence of a turbulent shear layer of finite width

with a wake-type flow, even in the formal limit a! 0, n ¼ 0, included in the fundamental assumption (1). In that limit

the unsteady flow in the wake region is presumably not affected significantly by the periodically occurring well-known

wall layer bursts. As will turn out, this characteristic allows for an investigation of some properties associated with the

unsteady motion on the basis of Eqs. (2) and (3).

3.1. The slender-wake limit

In the wake region the Reynolds stresses are quantities of OðaÞ. Then the nonlinearities in the momentum equation (3)

suggest to expand the flow quantities according to

½u; v;w; p� � ½u0; 0; 0; p0�ðs;NÞ þ a1=2½u01; v
0
1;w
0
1; p
0
1�ðt; s;N; . . .Þ þ af½u2; v2; 0; p2�ðs;NÞ

þ ½u02; v
0
2;w
0
2; p
0
2�ðt; s;N; . . .Þrg þ Oða3=2Þ; d=a ¼ d0ðsÞ þ Oða2Þ. (36)

Herein a suitable shear layer coordinate N ¼ n=a is introduced, and the dots indicate dependences on inner spatial and time

scales, which are specified later. Note that the omission of the time-averaged terms of Oða1=2Þ in Eq. (36) is a consequence of

the expansion ½u; v; p� � ½u0; p0; 0� þ a½u2; p2; v2� þ Oða2Þ of the time-mean flow quantities, as suggested by the governing
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Fig. 3. Local distributions of Dp0 ¼ p0ðsÞ � p0ð0Þ and usðsÞ for k ¼ 1:5, k ¼ 2:7 ¼
:

kc, and k ¼ 3:4; the circles indicate the occurrence of
singular points.
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equations (5) and (6). Inserting Eq. (36) into Eqs. (5) and (6) then gives rise to the shear layer approximation

p0ðs;NÞ ¼ p0ðsÞ; �dp0=ds ¼ ue due=ds, (37)

qsu0 þ qNv2 ¼ 0; u0qsu0 þ v2qNu0 ¼ �dp0=ds� qN ðu
0
1v01Þ. (38)

Eqs. (37) and (38) are seen to govern the turbulent motion along the separating streamline S to leading order

sufficiently far from S, i.e. for jsj ¼ Oð1Þ, see Fig. 1(a). They are subject to the wake-type boundary conditions

v2ðs; 0Þ ¼ u01v01ðs; 0Þ ¼ 0; u0 s; d0ðsÞð Þ � ueðsÞ ¼ u01v01 s; d0ðsÞð Þ ¼ 0. (39)

By excluding the apparent trivial solution u0 � ueðsÞ, v2 � u01v01 � 0, which implies a velocity defect of oð1Þ, we seek non-

trivial solutions u0; v2; d0 of Eqs. (37)–(39) with respect to separation. To this end, it is useful to consider Eqs. (38)

and (37) evaluated for N ¼ 0,

dðu2
s � u2

eÞ=ds ¼ �2½qN ðu
0
1v01Þ�ðs; 0Þ. (40)

Herein usðsÞ ¼ u0ðs; 0Þ again denotes the slip velocity. Note that separation is associated with flow reversal further

downstream, which, in turn, requires usð0Þ ¼ 0. To gain first insight how the boundary layer behaves as s! 0�, the

problem posed by Eqs. (37)–(39) has been solved numerically, by adopting the same algebraic shear stress closure that

was employed successfully for the boundary layer calculations carried out by Scheichl and Kluwick (2007b).

We again discard the possibility that the impressed potential flow exhibits a rear stagnation point S, since inspection

of Eq. (40), confirmed by the numerical study, shows that then us not necessarily approaches zero in the vicinity of S.

Therefore, the picture of a ‘‘collision’’ of two boundary layers is apparently not appropriate for describing turbulent

separation. Consequently, separation is seen to be associated with a smoothly separating inviscid flow, according to the

situation sketched in Fig. 2(b). As was outlined by Birkhoff and Zarantonello (1957) and Gurevich (1966), only flows

having kX0 are topologically possible. A suitable model for the surface velocity ueðsÞ that exhibits the then required

local behaviour expressed in Eq. (16) is given by ueðsÞ ¼ ð3=2þ sÞm½1þ kð�2sÞ1=2�=ð1þ kÞ, �1=2pso0, such that

ueð�1=2Þ ¼ 1. Here the exponent m represents an eigenvalue of the self-preserving solution for a given value of

usð�1=2Þ, which serves as the initial condition for the downstream integration of Eqs. (37)–(39) cf. Scheichl and

Kluwick (2007b). Specifically, the value usð0Þ ¼ 0:95 has been imposed, yielding m¼
:
� 0:3292. The distributions for the

impressed adverse difference pressure p0ðsÞ � p0ð0Þ and the resulting slip velocity usðsÞ are plotted in Fig. 3 for different

values of the control parameter k. It is found that for sufficiently small values of k the integration terminates in a

singular manner at s ¼ 0 where us assumes a finite limit, i.e. usð0Þ40. For increasing values of k this threshold

decreases, such that it finally vanishes for a critical value of k, say, k ¼ kc. We note that near k ¼ kc the numerical

calculations are very sensitive to slight variations in the value of k; for the specific choice of ueðsÞ adopted here one finds

that kc¼
:
2:7. For k4kc, however, the solution admits a Goldstein-type singularity at a position upstream of s ¼ 0

which has been discussed in more detail by Scheichl and Kluwick (2007b). Here we add that a thorough analytical study

of the numerically observed singular behaviour of the boundary layer solutions, also expressed through Eq. (40), is a

task of the current research.

As a first, rather remarkable, result, the location of turbulent break-away separation in the double limit a ¼ n ¼ 0 is

seen to be associated with a positive, presumably single-valued, value kc of k, which has to be found by means

of iterative boundary layer calculations. This strikingly contrasts its laminar counterpart, where the so-called

Brillouin–Villat condition fixes the position of inviscid flow detachment by the requirement k ¼ 0, see Sychev (1972)
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and Smith (1977). On the other hand, the experimental findings of Tsahalis and Telionis (1975) strongly support

the singular behaviour of the turbulent flow in the boundary layer limit there due to a positive value k ¼ k� as

outlined above. Furthermore, the downstream shift of that point for increasing values of k, sketched in Fig. 2(b),

explains why, in general, turbulent separation from a cylindrical body takes place further downstream as it is the

case when the flow is still laminar. Moreover, first investigations performed by the authors indicate that in the turbulent

case the more precise determination of the location of separation for small but finite values of both a and n is

determined by a locally strong rotational/irrotational interaction mechanism, analogous to that proposed by Sychev

(1983, 1987).

3.2. Internal structure ‘‘derived’’ from first principles

As a starting point, we consider the well-known transport equation for the time-averaged specific turbulent kinetic

energy K ¼ u0 � u0=2 ¼ ðu02 þ v02 þ w02Þ=2, which results from Reynolds-averaging the inner product of u0 with the

momentum equation (3) by substituting the continuity equation (2),

DtKþ r � ðk þ p0Þu0 � nDKþ ep ¼ �u0u0:ru; ep:¼nru0:ru0. (41)

Herein ep is commonly referred to as turbulent (pseudo-)dissipation. By taking into account Eq. (36), the least-

degenerate shear layer approximation of Eq. (41) in the double limit given by a! 0 and n! 0 is found to be

qN ðp
0
1v01Þ þ ep �� u01v01qNu0. (42)

We integrate this relationship across the shear layer thickness, i.e. from N ¼ 0 to N ¼ d0. Then the net contribution of

the diffusive term on the left-hand side of Eq. (42) is seen to vanish, whereas the resulting net turbulent ‘‘production’’ on

the right-hand side is positive and of Oð1Þ since both the Reynolds shear stress �u01v01 and the shear rate u0;N are

apparently non-negative. Remarkably, then ep is a quantity of Oð1Þ in the formal limit n ¼ 0.

The quantity ep is obtained by Reynolds-, or equivalently, time-averaging according to Eq. (4), the stochastically varying

quadratic form ru0:ru0. By adopting the rather weak assumption that the averaging process leaves its order of magnitude

unchanged, we find, with some reservation (due to the at present apparent lack of experimental evidence), that

ru0 ¼ Oðn�1=2Þ (43)

holds for the predominant fraction of intervals of the time t. As the most simple description of the fluctuating

motion, we next assume that the turbulent fluctuations are governed by a single spatial ‘‘micro-scale’’, denoted by l
(together with a correspondingly small time scale) apart from the ‘‘macro-scales’’, represented by a streamwise length of

Oð1Þ and the shear layer thickness of OðaÞ. It then follows from the estimate (43) in combination with Eq. (36) that

appropriate ‘‘micro-variables’’ are given by ðt0; x0Þ ¼ ðt; xÞ=l where x0 ¼ ðs0; n0; z0Þ and l ¼ ðnaÞ1=2. That is, the smallest

spatial scales are measured by l. Interestingly, they are asymptotically larger than the (non-dimensional) celebrated

Kolmogorov length scale, which is commonly associated with the dissipative small-scale structure of turbulence and given

by ðn3=epÞ
1=4. It should be mentioned that this novel ‘‘micro-scale’’ is inherently linked to the asymptotic investigation of the

equations of motion (2) and (3) as well as the ‘‘first moment’’ of the latter, given by (41). In contrast, the definition of the

Kolmogorov scale merely results from dimensional reasoning and, thus, has no profound rational basis.

Hence, the equations of motion (2) and (3) are expanded in the sequence of ‘‘inviscid’’ linear equations

r0 � u0i ¼ 0, (44)

D0tu
0
i þN 0i�1 ¼ �r

0p0i; N 00 ¼ 0; D0t ¼ qt0 þ u0ðs;NÞqs0 . (45)

Here and in the following i ¼ 1; 2; . . . ; u0i ¼ ðu
0
i; v
0
i;w
0
iÞ, and r

0 denotes the gradient with respect to x0. The inhomogeneous

terms N 0i in Eq. (45) are defined by expanding the nonlinear convective operator in Eq. (3), according to Eq. (36),

ðu � r0 � u0qs0 Þu
0 � a1=2N 01 þ aN 02 þ � � � . (46)

Then the vector N 0i depends on the velocity fluctuations u0j where j ¼ 1; 2; . . . ; i. By eliminating the pressure fluctuations p0i
in Eq. (45), the vorticity fluctuations x0i are seen to satisfy the equations

D0t x
0
i ¼ �r

0 	N 0i�1; x0i ¼ r
0 	 u0i. (47)

Thus, D0tx
0
1 ¼ 0, so that x01 depends on the ‘‘micro-variables’’ x0 ¼ s0 � u0t0, n0, and z0, but not explicitly on t0. In principle,

u01 then can be calculated from its Helmholtz decomposition, given by the distribution of x01 together with the vanishing

divergence as expressed by Eq. (44). Therefore, u01 and, in turn, N 01 also show no explicit dependence on t0, giving

x02 ¼ C 0 � ðr0 	N 01Þt
0, where C 0 is a ‘‘constant’’ of integration. The requirement that the first of the expansions (36) must
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be uniformly valid with respect to the ‘‘micro-time’’ t0 then gives rise to the solvability condition r0 	N 01 ¼ 0. As a result,

one recursively finds that D0t x
0
i ¼ 0 in general, such that the velocity and pressure fluctuations u0i and p0i, respectively,

depend on x0, s0, n0, and z0, but, most important, not explicitly on t0, and are determined by

r0 	N 0i ¼ 0; r0p0i ¼ �N 0i�1. (48)

Eqs. (48) describe a stationary motion with respect to x0, i.e. in a frame of reference which moves with the time-mean

streamwise velocity u0ðs;NÞ along the separating streamlineS of the flow in the formal limit n ¼ 0, see Fig. 1(a). Note that

they comprise the full nonlinear steady Euler equations, satisfied by u01 and p02.

This wave-type transport of the stochastic fluctuations along with the time-averaged flow found from the ‘‘micro-

scales’’ analysis is commonly termed as ‘‘coherent motion’’: this contribution to the overall turbulent motion is usually

associated with spatio-temporal regularity, whereas the dynamics of the stochastic fluctuations acting on the smaller

scales involves its random part. As a further consequence of these considerations, the process of time-averaging

according to Eq. (4) is seen to provide a filtering of the fluctuating motion with respect to x0 and, in turn, rather not only

with respect to the ‘‘micro-time’’ t0 but also to the streamwise ‘‘micro-variable’’ s0. The view that the statistically

stationary turbulent flow depends on the spatial ‘‘macro-variables’’ s and N only is, therefore, supported by an

asymptotic investigation of the Navier–Stokes equations (2) and (3) and, subsequently, usual time-averaging.

The relationships (44)–(47) are valid for ioI where the index I signifies contributions to Eq. (36) of Oðn1=2Þ. For i ¼ I

it follows from Eqs. (2) and (3) that the dynamics of these contributions are affected by the viscous term on the right-

hand side of Eq. (3). Also, the normal gradient qNu0 then enters the momentum balance as a consequence of the

‘‘macro-scale’’ a which describes the time-mean shear layer approximation. This in turn suggests the introduction of a

further set ðta; xaÞ ¼ ðt; xÞ=a of ‘‘micro-variables’’. Let ra denote the gradient with respect to xa and es, en, and ez the

unit vectors in the respective directions indicated by the subscripts. We then find

r0 � u0I ¼ �r
a � u01, (49)

D0tu
0
I þN 0I�1 þDa

t u01 þ esv
0
1qNu0 ¼ �r

0p0I �r
ap01 þ D0u01,

Da
t ¼ qta þ u0ðs;NÞqsa ; D0 ¼ r0 � r0. (50)

From Eq. (48) it follows that p01 is independent of x0 since N 00 vanishes, according to Eq. (45). By taking the curl with

respect to x0 one then obtains from Eq. (50)

D0tx
0
I ¼ �r

0 	N 0I�1 �Da
t x
0
1 � ðqNu0Þðenqz0 � ezqn0 Þv

0
1 þ D0x01. (51)

The right-hand sides of both Eqs. (51) and (49) do not explicitly depend on t0. With the same arguments leading to

Eq. (48), then the Helmholtz decomposition of x0I suggests that u0I and, as a consequence of Eq. (50), p0I exhibit no

explicit t0-dependence too. In turn, the right-hand side of Eq. (51) must vanish. Therefore, Eq. (51) not only determines

the quantity u0I�1, but can also be interpreted as a linear transport equation for the leading-order contribution x01 to the

vorticity with respect to the newly introduced time ta and x0. However, the motion which is affected by the viscous term

in Eq. (3) is presumably also governed by convective terms which are nonlinear in the leading-order contribution u01 to
the velocity fluctuations. But, in view of Eq. (50), this is only possible by introducing a set of ‘‘intermediate micro-

variables’’ ðt̂; x̂Þ ¼ ðt; xÞ=a3=2. Thus, the associated new length scale of Oða3=2Þ is much larger than the viscosity-affected

one, l, but still smaller than the shear layer thickness of OðaÞ. We close the analysis by noting that this new length scale

serves as a measure for the size of the large eddies in the wake region, and, in turn, of the mixing length. This fully

agrees with the scaling of the latter found from the time-mean analysis, cf. Scheichl and Kluwick (2007b).

4. Conclusions and further outlook

We have demonstrated that turbulent bluff-body separation requires a streamwise velocity defect of Oð1Þ as Re!1

in the fully turbulent main region of the oncoming boundary layer, as the classical assumption of a small velocity deficit

is intrinsically tied to the idea of a firmly attached external potential flow, and, in turn, leads to a serious inconsistency

in the asymptotic hierarchy of the flow, which originates from an asymptotically small vicinity of the rear stagnation

point. On the other hand, for the large-defect boundary layer the limiting inviscid solution must be sought in the class of

flows exhibiting a free streamline which departs smoothly from the surface. As one remarkable result strikingly

contrasting a well-known finding in the theory of laminar separation, here the Brillouin–Villat condition is not met at

the separation point. The formulation of the locally strong rotational/irrotational interaction of the separating flow

with the external bulk flow is a topic of the current research. Future research activities include, amongst others, the

asymptotic investigation of the unsteady motion, where particular emphasis should be placed on the rationally based
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modelling of turbulent boundary layers undergoing separation. Most important, as a first step in this direction, it has

been shown here how the underlying boundary layer concept is strongly supported by such an analysis. Here we note

that, to the authors’ knowledge, the only attempt currently available in literature to treat turbulent boundary layers by

tackling the full Navier–Stokes equations in the limit (1) from a rigorous asymptotic point of view must be attributed to

Deriat and Guiraud (1986). As one physically appealing result of the present study, an inner length of Oða3=2Þ reflecting
the size of the large-scale eddies in the wake flow regime is found, which interestingly equals that of the mixing length,

given by Scheichl and Kluwick (2007b). Although the analysis also predicts even larger eddies having a diameter of

OðaÞ, those comparable to the mixing length scale determine the distance at which the flow starts to feel the presence of a

confining wall. Remarkably, this interpretation of the mixing length not only fully agrees with the mathematical need to

introduce a so-called inner wake layer having a thickness of Oða3=2Þ, see Scheichl and Kluwick (2007b). Moreover, it

also conforms to the mixing length hypothesis (originally developed by Prandtl), where mid-size eddies are responsible

for the turbulence transport from one fluid layer to the adjacent one, as proposed by Hinze (1975).

Finally, we stress that, notwithstanding the strongly encouraging progress made so far, the asymptotic analysis of the

unsteady flow is still in a rather early stage. Therefore, its implications on turbulence modelling (of both attached and

separating flow) can hardly be reliably projected for the time being. Also, comparison of the theory with both

experimental and numerical data obtained for bluff-body flows—see e.g. the recent database provided by Braza et al.

(2006)—is clearly a required task of future research efforts.
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